Feedback is a ubiquitous learning tool, but it can have positive or negative effects (e.g., Fyfe & Rittle-Johnson, 2016). One theory suggests that feedback is likely to have negative effects when it directs attention to the self (e.g., I must not be smart) as opposed to the task (e.g., oh, that’s how you solve the task) (Kluger & DeNisi, 1998).

Goal

To examine the effects of feedback in an online math learning environment. In particular, to compare self-directed feedback, task-directed feedback, and no-feedback.

Background

Undergraduate students participated in a single online learning session. They solved a set of five probability problems and received one of three types of feedback after each problem: Self-Feedback, Task-Feedback, or No-Feedback. Then, students completed a 5-item posttest.

We expected students in the task-feedback condition to score higher on the posttest than students in the no-feedback condition. In contrast, we expected students in the self-feedback condition to score the lowest.

Method & Predictions

- **Self-Feedback**
 - Correct trials: YOU got it! Your response is correct! You responded with 80%.
 - Incorrect trials: YOU made a mistake. Your response is incorrect. You should have responded with 80%.

- **Task-Feedback**
 - Correct trials: The response provided is correct. The correct response is 80%.
 - Incorrect trials: The response provided is incorrect. The correct response is 80%.

- **No-Feedback**
 - Correct and incorrect trials: The response has been recorded.

We programmed the experiment in a Qualtrics survey and administered the experiment to undergraduate psychology students via SONA. Utilizing an online learning environment allowed for greater control over aspects of the learning environment (e.g., timing, administration of feedback, item order, etc.) and removed any effects of the social, person-to-person feedback administration.